Laser-driving of semimetals allows creating novel quasiparticle states

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity to observe particle properties that have no realization in elementary particles. In the present study, an international research team led by Angel Rubio from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg and the University of the Basque Country in Donostia-San Sebastián predicted how laser light can be used to create Weyl fermion states in 3-D Dirac materials and to switch between Weyl semimetal, Dirac semimetal and topological insulator states on ultrafast timescales. Besides its relevance for fundamental quantum physics, the results might lead to applications in ultrafast switching of material properties. The findings are published online in the journal Nature Communications today.