Quantum memory with record-breaking capacity based on laser-cooled atoms

The emerging domain of parallelized quantum information processing opens up new possibilities for precise measurements, communication and imaging. Precise control of multiple stored photons allows efficient handling of this subtle information in large amounts. In the Quantum Memories Laboratory at Faculty of Physics, University of Warsaw, a group of laser-cooled atoms has been used as a memory that can store up to 665 quantum states of light simultaneously. The experimental results have been published in Nature Communications.