Spinning comet observed to rapidly slow down during close approach to Earth

Astronomers at Lowell Observatory observed comet 41P/Tuttle-Giacobini-Kresak last spring and noticed that the speed of its rotation was quickly slowing down. A research team led by David Schleicher studied the comet while it was closer to the Earth than it has ever been since its discovery. The comet rotational period became twice as long, going from 24 to more than 48 hours within six weeks, a far greater change than ever observed before in a comet. If it continues to slow down, it might stop completely and then begin rotating in the opposite direction. 

Click here to visit Original posting

Spinning comet observed to rapidly slow down during close approach to Earth

Astronomers at Lowell Observatory observed comet 41P/Tuttle-Giacobini-Kresak last spring and noticed that the speed of its rotation was quickly slowing down. A research team led by David Schleicher studied the comet while it was closer to the Earth than it has ever been since its discovery. The comet rotational period became twice as long, going from 24 to more than 48 hours within six weeks, a far greater change than ever observed before in a comet. If it continues to slow down, it might stop completely and then begin rotating in the opposite direction. 

Click here to visit Original posting

A solar-powered asteroid nursery at the orbit of Mars

The planet Mars shares its orbit with a handful of small asteroids, the so-called Trojans. Among them, one finds a unique group, all moving in very similar orbits, suggesting that they originated from the same object. But the mechanism that produced this "family" has been a mystery. Now, an international team of astronomers believe they have identified the culprit: sunlight. Their findings, which highlight how small asteroids near the Sun may evolve, are to be presented at the annual Meeting of the Division of Planetary Sciences of the American Astronomical Society at Provo, Utah this week, by Dr. Apostolos Christou, a Research Astronomer at the Armagh Observatory and Planetarium in Northern Ireland, United Kingdom and leader of the research team.

Click here to visit Original posting

A solar-powered asteroid nursery at the orbit of Mars

The planet Mars shares its orbit with a handful of small asteroids, the so-called Trojans. Among them, one finds a unique group, all moving in very similar orbits, suggesting that they originated from the same object. But the mechanism that produced this "family" has been a mystery. Now, an international team of astronomers believe they have identified the culprit: sunlight. Their findings, which highlight how small asteroids near the Sun may evolve, are to be presented at the annual Meeting of the Division of Planetary Sciences of the American Astronomical Society at Provo, Utah this week, by Dr. Apostolos Christou, a Research Astronomer at the Armagh Observatory and Planetarium in Northern Ireland, United Kingdom and leader of the research team.

Click here to visit Original posting