Click here to visit Original posting
NASA Administrator Charles Bolden will give remarks at the launch of the world’s first “flying classroom” — an innovative program to inspire and engage students in science, technology, engineering and mathematics (STEM) education. The event will be held at 11 a.m. EDT Tuesday, Sept. 23, at the Signature Aviation Terminal of Ronald Reagan Washington National Airport in Arlington, Virginia.

Comments No Comments »

Click here to visit Original posting
Arctic sea ice coverage continued its below-average trend this year as the ice declined to its annual minimum on Sept. 17, according to the NASA-supported National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder.

Comments No Comments »

Click here to visit Original posting
The Cassini spacecraft captures a rare family photo of three of Saturn’s moons that couldn’t be more different from each other! As the largest of the three, Tethys (image center) is round and has a variety of terrains across its surface. Meanwhile, Hyperion (to the upper-left of Tethys) is the “wild one” with a chaotic spin and Prometheus (lower-left) is a tiny moon that busies itself sculpting the F ring.

To learn more about the surface of Tethys (660 miles, or 1,062 kilometers across), see PIA17164. More on the chaotic spin of Hyperion (168 miles, or 270 kilometers across) can be found at PIA07683. And discover more about the role of Prometheus (53 miles, or 86 kilometers across) in shaping the F ring in PIA12786.

This view looks toward the sunlit side of the rings from about 1 degree above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 14, 2014.

The view was acquired at a distance of approximately 1.2 million miles (1.9 million kilometers) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of 22 degrees. Image scale is 7 miles (11 kilometers) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

For more information about the Cassini-Huygens mission visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

Credit: NASA/JPL-Caltech/Space Science Institute

Comments No Comments »

Click here to visit Original posting

The giant planet Saturn is mostly a gigantic ball of rotating gas, completely unlike our solid home planet. But Earth and Saturn do have something in common: weather, although the gas giant is home to some of the most bizarre weather in our Solar System, such as the swirling storm shown in this Cassini view.

Known as “the hexagon”, this weather feature is an intense, six-sided jet stream at Saturn’s north pole. Spanning some 30 000 km across, it hosts howling 320 km/h winds that spiral around a massive storm rotating anticlockwise at the heart of the region.

Numerous small vortices rotate in the opposite direction to the central storm and are dragged around with the jet stream, creating a terrifically turbulent region. While a hurricane on Earth may last a week or more, the hexagon has been raging for decades, and shows no signs of letting up.

This false-colour image of the hexagon was made using ultraviolet, visible and infrared filters to highlight different regions.

The dark centre of the image shows the large central storm and its eye, which is up to 50 times bigger than a terrestrial hurricane eye. The small vortices show up as pink-red clumps. Towards the lower right of the frame is a white-tinted oval storm that is bigger than any of the others — this is the largest of the vortices at some 3500 km across, twice the size of the largest hurricane ever recorded on Earth.

The darker blue region within the hexagon is filled with small haze particles, whereas the paler blue region is dominated by larger particles. This divide is caused by the hexagonal jet stream acting as a shepherding barrier — large particles cannot enter the hexagon from the outside.

These large particles are created when sunlight shines onto Saturn’s atmosphere, something that only started relatively recently in the northern hemisphere with the beginning of northern spring in August 2009.

Cassini will continue to track changes in the hexagon, monitoring its contents, shape and behaviour as summer reaches Saturn’s northern hemisphere in 2017.

The Cassini–Huygens mission is a cooperative project of NASA, ESA and Italy’s ASI space agency.

An animated version is available here.

Comments No Comments »

Click here to visit Original posting
Members of the Mars Atmosphere and Volatile Evolution (MAVEN) team celebrate at the Lockheed Martin operations center in Littleton, Colorado, Sunday night, after getting confirmation that the spacecraft entered Mars’ orbit.

MAVEN is the first spacecraft dedicated to exploring the tenuous upper atmosphere of Mars, and will soon begin taking measurements of the composition, structure and escape of gases in Mars’ upper atmosphere and its interaction with the sun and solar wind.

Credit: Lockheed Martin

Comments No Comments »

Click here to visit Original posting
NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft successfully entered Mars’ orbit at 10:24 p.m. EDT Sunday, Sept. 21, where it now will prepare to study the Red Planet’s upper atmosphere as never done before. MAVEN is the first spacecraft dedicated to exploring the tenuous upper atmosphere of Mars.

Comments No Comments »

Click here to visit Original posting
SpaceX’s Dragon spacecraft lifts off on the Falcon 9 rocket from Cape Canaveral Air Force Station in Florida at 1:52 a.m. EDT Sunday, Sept. 21, carrying about 5,000 pounds of NASA science investigations and cargo are on their way to the International Space Station.The mission is the company’s fourth cargo delivery flight to the space station.

One of the new Earth science investigations heading to the orbital laboratory is the International Space Station-Rapid Scatterometer. ISS-RapidScat monitors ocean winds from the vantage point of the space station. This information will be useful for weather forecasting and hurricane monitoring. Dragon also will deliver the first-ever 3-D printer in space, biomedical hardware and other biological research including a new plant study.

Dragon is scheduled to be grappled at 7:04 a.m. on Tuesday, Sept. 23, by Expedition 41 Flight Engineer Alexander Gerst of the European Space Agency, using the space station’s robotic arm to take hold of the spacecraft. Dragon is scheduled to depart the space station in mid-October for a splashdown in the Pacific Ocean, west of Baja California, bringing from the space station almost 3,200 pounds of science, hardware and crew supplies.

Credit: NASA/Sandy Joseph and Kevin O’Connell

Comments No Comments »

Click here to visit Original posting
About 5,000 pounds of NASA science investigations and cargo are on their way to the International Space Station aboard SpaceX’s Dragon spacecraft. The cargo ship launched on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida at 1:52 a.m. EDT Sunday, Sept. 21.

Comments No Comments »

Click here to visit Original posting
NASA announced Saturday the opening of registration for its Mars Balance Mass Challenge and the launch of its new website, NASA Solve, at the World Maker Faire in New York.

Comments No Comments »

Click here to visit Original posting
Steve Mellin, 6th Space Warning Squadron support officer, stands before two wind turbine power generators on Cape Cod Air Force Station, Mass., Sept. 11, 2014. The two wind turbines provide Cape Cod AFS with nearly 50 percent of their power needs and …

Comments No Comments »