Model identifies a high degree of fluctuations in gluons as essential to explaining proton structure

Gluons, the glue-like particles that ordinarily bind subatomic quarks within the protons and neutrons that make up atomic nuclei, appear to play an important role in establishing key properties of matter. But right now, no one can see how gluons are distributed within individual protons and nuclei. Recent experiments at Brookhaven National Lab and the European Center for Nuclear Research (CERN) suggest that the arrangement of these particles within a proton fluctuates strongly. This means that while, on average, a proton is close to spherical, if we were to take snapshots of a proton in time, each of them would look dramatically different. Brookhaven nuclear theorists have developed a model of gluon fluctuations that is consistent with previous measurements. The model allows them to interpret the new data from nuclear collision experiments as snapshots of what a proton really looks like at any given point in time.