Radioactive elements in Cassiopeia A suggest a neutrino-driven explosion

Stars exploding as supernovae are the main sources of heavy chemical elements in the Universe. In particular, radioactive atomic nuclei are synthesized in the hot, innermost regions during the explosion and can thus serve as probes of the unobservable physical processes that initiate the blast. Using elaborate computer simulations, a team of researchers from the Max Planck Institute for Astrophysics (MPA) and RIKEN in Japan were able to explain the recently measured spatial distributions of radioactive titanium and nickel in Cassiopeia A, a roughly 340 year old gaseous remnant of a nearby supernova. The computer models yield strong support for the theoretical idea that such stellar death events can be initiated and powered by neutrinos escaping from the neutron star left behind at the origin of the explosion.