On-demand control of terahertz and infrared waves

The ability to control infrared and terahertz waves using magnetic or electric fields is one of the great challenges in physics that could revolutionise opto-electronics, telecommunications and medical diagnostics. A theory from 2006 predicts that it should be possible to use graphene—a monoatomic layer of carbon atoms—in a magnetic field not only to absorb terahertz and infrared light on demand but also to control the direction of circular polarisation. Researchers from the University of Geneva (UNIGE), Switzerland, and the University of Manchester have succeeded in testing this theory and achieved the predicted results. The study, to be published in the journal Nature Nanotechnology, shows that the scientists found an efficient way to control infrared and terahertz waves. It also shows that graphene is keeping its initial promises, and is making its way as the material of the the future, whether on earth or in space.


Click here for original story, On-demand control of terahertz and infrared waves


Source: Phys.org