Extreme biomimetics – the search for natural sources of materials engineering inspiration

Biologically inspired engineering to produce biomimetic materials and scaffolds typically occurs at the micro- or nanoscale. In a new study on Science Advances, Iaroslav Petrenko and a multidisciplinary global research team, proposed the use of naturally pre-fabricated, three-dimensional (3-D) spongin scaffolds to preserve molecular detail across larger, centimeter-scale samples. During materials characterization studies, researchers require large-scale samples to test nanoscale features. The naturally occurring collagenous resource contained a fine-scale structure, stable at temperatures of up to 12000C with potential to produce up to 4 x 10 cm 3-D microfibrous and nanoporous graphite for characterization and catalytic applications. The new findings showed exceptionally preserved nanostructural features of triple-helix collagen in the turbostratic (misaligned) graphite. The carbonized sponge resembled the shape and unique microarchitecture of the original spongin scaffold. The researchers then copper electroplated the composites to form a hybrid material with excellent catalytic performance observed in both fresh water and marine environments.


Click here for original story, Extreme biomimetics – the search for natural sources of materials engineering inspiration


Source: Phys.org