Optimising laser-driven electron acceleration

The interaction between lasers and matter is at the forefront of new investigations into fundamental physics as well as forming a potential bedrock for new technological innovations. One of the initiatives spearheading this investigation is the Extreme Light Infrastructure Nuclear Physics (ELI-NP) project. Here the project’s High-Power Laser System (HPLS)—the world’s most powerful laser—is just one of the tools driving electron acceleration with lasers, Direct Laser Acceleration (DLA). In a new paper published in EPJ D, Etele Molnar, ELI-NP, Bucharest, and co-authors study and review the characteristics of electron acceleration in a vacuum caused by the highest-power laser pulses achievable today looking for the key to maximum net energy gain.


Click here for original story, Optimising laser-driven electron acceleration


Source: Phys.org