Ultracold atom interferometry in space

In 2017, a team of researchers led by Leibniz University Hannover succeeded in generating Bose-Einstein condensates in space within the scope of the MAIUS-1 rocket mission. Bose-Einstein condensates describe a highly unusual state of matter close to absolute zero and can be illustrated with a single wave function. Through time-consuming analyses, the researchers studied different components of the condensate. Their findings have now been published in the scientific journal Nature Communications. This marks the beginning of extremely accurate measurements via atom interferometry in space.


Click here for original story, Ultracold atom interferometry in space


Source: Phys.org