Instant turn-over of magnetism by gyro motion of relativistic electrons

Magnetic fields are detected throughout the universe and widely participate in astrophysical dynamics. Various fundamental phenomena, including coronal mass ejections, solar flares, gamma-ray bursts and pulsar winds, are dominated by variations in magnetic fields. Although the mechanisms involved in the origin of magnetic fields in space are still uncertain, one of the widely accepted plausible scenarios is the turbulent dynamo, which amplifies weak magnetic fields. Recent numerical studies and experiments with long pulse laser-produced colliding plasma flows have demonstrated the capability of seed field amplification. Coupling strong magnetic fields and high-power lasers supports cutting-edge research in laboratory astrophysics and laser-driven charged particle accelerations. With moderate laser intensities and a relatively long pulse length, mega-gauss (MG) magnetic fields in plasmas at the edges of focal spots have been achieved. Numerical and theoretical studies predict a magnetic field strength of 100 MG, while state-of-the-art experimental results are about 10 MG.


Click here for original story, Instant turn-over of magnetism by gyro motion of relativistic electrons


Source: Phys.org