A unimorph nanocomposite dielectric elastomer for large-scale actuation

Dielectric elastomer actuators (DEAs) can undergo large, reversible in-plane deformation. In a new report now published in Science Advances, Junhong Pu and a team of scientists in soft materials research and polymer science at the University of California, Los Angeles, U.S., and Sichuan University, China, introduced an electrophoretic process to concentrate boron nitride nanosheet dispersion in a dielectric elastomer precursor solution onto a selected electrode surface. The team obtained a unimorph nanocomposite dielectric elastomer abbreviated UNDE with a seamless bilayer structure containing 13 times the modulus difference. The team could actuate the UNDE construct to large bending curvatures with enhanced durability compared to conventional nanocomposite dielectric elastomers. They arranged multiple UNDE units in a simple electrophoretic concentration process using patterned electrode areas; then, by using the actuator, they developed a high-speed lens motor with variable focal length to form a two-lens optical system.


Click here for original story, A unimorph nanocomposite dielectric elastomer for large-scale actuation


Source: Phys.org