Pinpoint creation of chirality by organic catalysts

Researchers at Nagoya University have reported in Nature Communications on the development of an organic catalyst (organocatalyst) that triggers a highly stereoselective 1,6-addition of azlactones (nucleophile) to a δ-aryl dienyl carbonyl compound (electrophile) to generate amino acid derivatives in high yields. The generated 1,6-adduct contains two carbon stereocenters, and a slight structural change in the organocatalyst leads to inversion of stereochemistry at a single stereocenter to form a diastereomer in high selectivity. The group started this research in 2012 and found this inversion of stereochemistry upon screening various amino acids incorporated in their unique iminophosphorane catalyst.