Locked movement in molecular motor and rotor

For a motor to power machinery, the local motion has to be translated into the ordered movement of other parts of the system. University of Groningen organic chemists led by professor Ben Feringa are the first to achieve this in a molecular motor. They have produced a light driven rotary motor in which the rotary movement is locked to that of a secondary naphthalene rotor. The results will be published on 2 June in the journal Science.