The field of medicine is always on the lookout for better disease diagnostic tools—simpler, faster, and cheaper technologies to enhance patient treatment and outcomes. Currently, microfluidic bioassay devices are the preferred diagnostic tools that allow clinicians to measure the concentration of disease biomarkers within a patient’s biological sample, such as blood. They can indicate the likelihood of a disease based on a comparison of the biomarker concentration in the sample relative to the normal level. To detect this concentration, the patient’s sample is passed across a surface containing immobilized bioreceptors, or “biomarker-capturing” molecules that have been attached to this surface. A researcher can then record the biomarker abundance, determine whether the level is normal, and reach a diagnosis. Since the efficiency of these devices relies on how intact and functional the attached bioreceptors are, immobilizing these bioreceptors without causing damage has proved daunting.