Localized orbital scaling correction functional ushering DFT to a new level of accuracy

Kohn-Sham density functional theory is one of the most successful theories in chemistry. It is formally rigorous; its relatively low computational cost and competitive accuracy in small and medium-sized systems make it one of the most popular methods in electronic structure calculations, and perhaps the only choice for modeling quantum effects of electrons in large chemical and biological systems. Nevertheless, the exact functional is not explicitly known and the state-of-the-art density functional approximations (DFAs) suffer from systematic errors. One of the dominant errors in DFAs is the delocalization error, which is ubiquitous and manifested in various ways. This has been a challenging open problem for decades. Recently, Chen Li, Neil Qiang Su and Weitao Yang from Duke University and Xiao Zheng from the University of Science and Technology of China developed a novel localized orbital scaling correction (LOSC) framework that demonstrates systematic elimination of the delocalization error.