Pushing the limit of thin-film absorption in solar and water-splitting applications

A silicon solar cell harvests the energy of the sun as light travels down through light-absorbent silicon. To reduce weight and cost, solar cells are thin, and while silicon absorbs visible light well, it captures less than half of the light in the near-infrared spectrum, which makes up one-third of the sun’s energy. The depth of the material limits absorption. But what if light within the cell could be channeled horizontally so that silicon could absorb its energy along the width of the cell rather than its depth?