The Use of Altered Gravity as a Tool to Understand Neurovestibular Mechanisms in Vertebrates

Abstract: Vertebrates sense gravito-inertial acceleration by mechanoreceptors (hair cells) in the otolith structures of the inner ear. These structures consist of ciliated sensory hair cells surmounted by biomineral grains of calcium carbonate (CaCO3) called otoconia that provide mechanical loading of hair cell cilia. Changes in their high density can alter the hair cells sensitivity to acceleration and orientation with respect to gravity. A widely considered mechanism by which the animal responds to a…