The discovery of an exoplanet has most often resulted from the monitoring of a star’s flicker (the transiting method) or its wobble (the radial velocity method). Discovery by direct imaging is rare because it is so difficult to spot a faint exoplanet hidden in the glare of its host star. The advent of the new generation of radio interferometers (as well as improvements in near-infrared imaging), however, has enabled the imaging of protoplanetary discs and, in the disc substructures, the inference of orbiting exoplanets. Gaps and ring-like structures are particularly fascinating clues to the presence or ongoing formation of planets.