Sodium is one of the most abundant elements, widely distributed on the Earth and in the ocean. Thus, sodium-ion batteries attract much attention for application in large-scale energy storage. The most popular cathodes for SIBs, i.e., the layered sodium-containing oxides, usually exhibit reversible host rearrangement between P-type and O-type stacking upon charge/discharge. Such a host rearrangement is unfavorable due to several factors: (1) The O-type phase is undesirable relative to the P-type, as the latter possesses a more open framework for Na-ion transport; (2) The rearrangements of host structure indicate sluggish reaction dynamics, which contributes to the voltage hysteresis and poor rate capability of the electrode; (3) The large variation in lattice parameters between P-type and O-type leads to elastic strain, causing the loss of active material and the resulting capacity fade.