The top 1% of the forest has been sharing some vital information with researchers. Ninety-eight scientists and thousands of field staff have concluded the largest study undertaken to date with the Smithsonian Forest Global Earth Observatory (ForestGEO), and what they have found will have profound implications toward ecological theories and carbon storage in forests. Rather than examining tree species diversity in temperate and tropical ecosystems, this global study emphasized forest structure over a vast scale. Using large forest plots from 21 countries and territories, Utah State researchers found that, on average, the largest 1% of trees in mature and older forests comprised 50% of forest biomass worldwide. Furthermore, the amount of carbon that forests can sequester depends mostly on the abundance of big trees. The size of the largest trees was found to be even more important to forest biomass than high densities of small and medium trees. Lead author Jim Lutz, Assistant Professor at Utah State University said, “Big trees provide functions that cannot be duplicated by small or medium-sized trees. They provide unique habitat, strongly influence the forest around them, and store large amounts of carbon.”