Disc galaxies like our own Milky Way, characterized by a flattened disc of stars and gas (often with a central bulge of material as well) have a wide range of masses, spatial extents, and stellar content. Nonetheless all disc galaxies, both locally and in the distant Universe, share some strikingly similar properties. Most notable is that the star formation rate correlates tightly with the galaxy’s gas content, the gas motions (the “velocity dispersion”), and the dynamical lifetime (roughly, the time it takes for the galaxy to rotate once). Moreover, this curiously universal rate is remarkably small: only about one per cent of the gas in disc galaxies turns into stars over that timescale, with much of the activity concentrated in the galaxies’ central regions. Most simple models of star formation predict that gravity should be much more effective in forming stars as it compresses the gas in molecular clouds. Observations indicate that both the correlations and the inefficiency extend down to the scale of individual molecular clouds.