Researchers recently discovered that the strength of the magnetic field required to elicit a particular quantum mechanical process, such as photoluminescence and the ability to control spin states with electromagnetic (EM) fields, corresponds to the temperature of the material. Based on this finding, scientists can determine a sample’s temperature to a resolution of one cubic micron by measuring the field strength at which this effect occurs. Temperature sensing is integral in most industrial, electronic and chemical processes, so greater spatial resolution could benefit commercial and scientific pursuits. The team reports their findings in AIP Advances.