Graphene tunnelling junctions: beyond the breaking point

Molecular electronics is a burgeoning field of research that aims to integrate single molecules as active elements in electronic devices. Obtaining a complete picture of the charge transport properties in molecular junctions is the first step toward realizing functionality at the nanoscale. Researchers from Delft University of Technology have now studied the charge transport in a novel system, the graphene mechanical break junction, which for the first time allowed direct experimental observation of quantum interference effects in bilayer graphene as a function of nanometer-displacements. This new platform could potentially be used for electronic fingerprinting of biomolecules, from DNA to proteins, which in turn can have important implications for the diagnosis and treatment of diseases.