Microelectromechanical systems (MEMS) have expansive applications in biotechnology and advanced engineering with growing interest in materials science and engineering due to their potential in emerging systems. Existing techniques have enabled applications in cell mechanobiology, high-precision mass sensing, microfluidics and in energy harvesting. Projected technical implications broadly include constructing precision-sensing MEMS, tissue scaffolds that mimic the principles of mechanobiology, and energy-harvesting applications that can operate on supported broad bandwidths. At present, devices (microsensors and MEMS) are fabricated using manufacturing methods of the semiconductor industry—specifically, two-dimensional (2-D) lithographic etching—with mechanical and electric components in planar configuration.