Sagittarius A* (Sgr A*), the supermassive black hole at the center of our Milky Way Galaxy, is 100 times closer to us than any other SMBH and therefore a prime candidate for studies of how matter radiates as it accretes onto black holes. SgrA* has been observed for decades and rapid fluctuations reported from X-ray to the near infrared wavelengths (intervening dust reduces optical light signals by a factor of over a trillion) and at submillimeter and radio wavelengths. Modeling the mechanisms of light variability is a direct challenge to our understanding of accretion onto SMBHs, but it is thought that correlations between flare timing at different wavelengths could reveal information about the spatial structure, for example if hotter material is located in a smaller zone closer to the black hole. One of the chief barriers to progress is the paucity of simultaneous multi-wavelength observations.