Imagine trying to figure out how something works when that something takes place in a space smaller than a femtoliter: one quadrillionith of a liter. Now, two scientists with a nose for solving mysteries have used a combination of mathematical modeling, electrophysiology, and computer simulations to explain how cells communicate effectively in highly constricted spaces such as the olfactory cilia, where odor detection takes place. The findings will inform future studies of cellular signaling and communication in the olfactory system and also in other confined spaces of the nervous system.