Abstract: A self-organizing map (SOM) is a type of competitive artificial neural network, which projects the high dimensional input space of the training samples into a low dimensional space with the topology relations preserved. This makes SOMs supportive of organizing and visualizing complex data sets and have been pervasively used among numerous disciplines with different applications. Notwithstanding its wide applications, the self-organizing map is perplexed by its inherent randomness, which produ…