Electricity-driven undersea reactions may have been important for the emergence of life

Though it remains unknown how life began, there is a community of scientists who suspect it occurred in or around deep sea hydrothermal environments. At such sites, water heated by contact with hot rocks from Earth’s mantle flows into the lower ocean, passing over and through minerals which are themselves precipitated by the interaction of this hot water with cold seawater. The minerals often include metal sulfides, such as iron sulfide, also known as pyrite or fool’s gold. As they precipitate, these mineral precipitates begin to form channels for the hot vent water, and since the metal-containing minerals are electrically conductive and the compositions of the vent water and ocean water are different, an electrical gradient is created—something like a natural battery—with electric current flowing from the vent water through the minerals and into the ocean. A team led by Tokyo Institute of Technology/Earth-Life Science Institute (ELSI) scientists have now shown via careful laboratory experiments that this current can reduce the metal sulfide minerals to native metals and mixed metal sulfide/metal conglomerates, which in turn can reduce and catalyze the reduction of various organic compounds.


Click here for original story, Electricity-driven undersea reactions may have been important for the emergence of life


Source: Phys.org