Research team aims to reduce cost of drug development using 3-D-printed living tissues

Thomas E. Angelini, Ph.D., Associate Professor in the Department of Mechanical & Aerospace Engineering at the University of Florida and his research group, the Soft Matter Engineering lab have successfully fabricated living micro-beams from glioblastoma cells and extra-cellular material (ECM) embedded in a packed microgel support medium. They subsequently characterized the physical properties of the beams and compared their results against traditional mechanical engineering models. To their surprise, these microscopic, delicate structures behave a lot like the massive beams used in everyday building construction. “We were pleased and excited to see that our micro-beams, only 50 to 200 µm in diameter, acted in accordance with the mechanical principles for other models such as large steel beams,” said S. Tori Ellison. Ellison is a Mechanical & Aerospace Engineering Ph.D. student who is mentored by Dr. Angelini and is the co-first author on the published paper that resulted from this research.


Click here for original story, Research team aims to reduce cost of drug development using 3-D-printed living tissues


Source: Phys.org