Forward or backward? New pathways for protons in water or methanol

A collaborative ultrafast spectroscopy and ab initio molecular dynamics simulations study shows that proton vacancies in the form of hydroxide/methoxide ions are as relevant for proton transfer between acids and bases as hydrated excess protons (H3O+, H5O2+), thus pointing for a clear demand for refinement of the microscopic picture for aqueous proton transport—in solution as well as in hydrogen fuel cells or transmembrane proteins—away from currently often assumed dominant role of hydrated excess protons. The study is recently published by scientists of the Max Born Institute of Nonlinear Optics and Short Pulse Spectroscopy (MBI) and the Martin-Luther-University Halle-Wittenberg (MLU) in the renowned Journal of the American Chemical Society.


Click here for original story, Forward or backward? New pathways for protons in water or methanol


Source: Phys.org