Electrodeposited surfaces with reversibly switching interfacial properties

Materials engineering technologies aim to control wettability and liquid repellence of material surfaces for diverse applications in and beyond the field of materials science. In a recent report on Science Advances, Yue Liu and a team of researchers in the departments of Materials Science and Engineering, and Chemistry and Molecular Engineering in China developed a general concept to develop metallic porous surfaces with exceptionally powerful, wettability-switch capabilities. To engineer the new surfaces, they used an extremely simple, one-step electrochemical deposition process. The team enabled the wettability switch and manipulated liquid repellant properties by changing the orientation of dodecyl sulfate ions that were ionically bonded to porous metallic membranes during electrodeposition. The resulting surfaces with adjustable wettability could trap diverse lubricants on demand in the pores to create liquid-infused porous surfaces customized for a variety of liquid-repellant properties. The research team demonstrated the applications of liquid-infused porous membranes for encryption, to control droplet transfer and for water-harvesting. Additionally, the materials scientists coated the silver porous membrane onto a copper mesh to engineer a smart, antifouling liquid gate to allow oil or water to pass through on request.


Click here for original story, Electrodeposited surfaces with reversibly switching interfacial properties


Source: Phys.org