Self-restrained genes enable evolutionary novelty

Changes in the genes that control development can potentially make large contributions to evolution by generating new morphologies in plants and animals. However, because developmental genes frequently influence many different processes, changes to their expression carry a risk of “collateral damage.” Scientists at the Max Planck Institute for Plant Breeding Research in Cologne and collaborators have now shown how gene self-repression can reduce the potential side effects of novel gene expression so that new forms can evolve. This self-regulation occurs via a distinctive molecular mechanism employing small regions of genomic DNA called low-affinity transcription factor binding sites.


Click here for original story, Self-restrained genes enable evolutionary novelty


Source: Phys.org