Fourier's 200-year-old heat equation explains hydrodynamic heat propagation

Michele Simoncelli, a Ph.D. student at EPFL, Andrea Cepellotti, a former EPFL student now at Harvard, and Nicola Marzari, head of EPFL’s Theory and Simulation of Materials laboratory, have developed a novel set of equations for heat propagation that goes beyond Fourier’s law and explains why and under which conditions heat propagation can become fluid-like rather than diffusive. These “viscous heat equations” show that heat conduction is not only governed by thermal conductivity, but also by thermal viscosity. The theory is in striking agreement with pioneering experimental results in graphite published earlier this year ,and may pave the way for the design of the next generation of more efficient electronic devices. The paper, “Generalization of Fourier’s law into viscous heat equations,” has been published in Physical Review X.


Click here for original story, Fourier’s 200-year-old heat equation explains hydrodynamic heat propagation


Source: Phys.org