Ultracold gases in time-dependent magnetic fields

It is now technically possible to hold groups of atoms at temperatures that are only a few hundredths of a degree above absolute zero. This so-called ‘ultracold gas’ loaded in an optical lattice is an extremely powerful platform to study quantum mechanical phenomena including phase transitions, due to the excellent control of experimental parameters, such as potential depths, inter-particle interaction strengths and lattice parameters. Sk Noor Nabi from Zhejiang University in Hangzhou, China and colleagues in the Indian Institute of Technology, Guwahati, India, have studied the phase transition between the Mott insulating (MI) and superfluid (SF) states of such a gas in a time-dependent synthetic magnetic field. Their results, published in EPJ B, show that the energy spectrum of the gas loses symmetry in the fluctuating magnetic field. This is observed in the disappearance of the striking ‘Hofstadter’s butterfly’ effect seen in the energy spectrum under a constant magnetic field.


Click here for original story, Ultracold gases in time-dependent magnetic fields


Source: Phys.org