Animal simulations and smart drug design: Nanomaterial transport to individual cells

Bioengineers can design smart drugs for antibody and nanomaterial-based therapies to optimize drug efficiency for increasingly efficient, early-stage preclinical trials. The ideal drug will have maximum efficiency at target tissue sites for transport from the tissue vasculature to the cellular environment. Researchers can use biological simulations coupled to in vitro approaches to predict their exposure rapidly and efficiently to predict drug biodistribution within single cells of live animal tissue without relying on animal studies. In a new study now published on Science Advances, Edward Price and Andre J. Gesquiere successfully used an in vitro assay and computational fluid dynamic (CFD) model to translate in vitro cell kinetics to whole-body simulations across multiple species and nanomaterial types. The work allowed them to predict drug distributions inside individual tissue cells and the team expect this work to refine, reduce and replace animal testing while providing scientists a fresh perspective on drug development.


Click here for original story, Animal simulations and smart drug design: Nanomaterial transport to individual cells


Source: Phys.org