Simultaneous simulation of gravitation and magnetism of a protoplanetary disk

From a massive disk of gas and dust rotating around the sun, the earth and the other seven planets of our solar system once developed alongside their moons. And the same must have happened, scientists believe, for the thousands of extrasolar planets discovered in recent decades. To gain more insight, astrophysicists use computer simulations to investigate the processes at work as planets form from such protoplanetary disks, such as the growth of a planet’s mass as well as the formation of its magnetic field. Up until very recently, these two processes—planet development and magnetic field formation—have been separate fields of research and simulated in separate models. But now, Lucio Mayer, Professor of Computational Astrophysics at the University of Zurich and Project Manager at the National Centre of Competence in Research Planets, along with his colleagues Hongping Deng, former Ph.D. student of Mayer, and Henrik Latter, University Lecturer at the University of Cambridge, have successfully combined both processes into one simulation for the first time. The results have now been published in the Astrophysical Journal.


Click here for original story, Simultaneous simulation of gravitation and magnetism of a protoplanetary disk


Source: Phys.org