Identifying different types of cells within a tissue or an organ can be very challenging and time-consuming. Methods to identify cell types from single-cell RNA sequencing data have been proposed, but they all fall short in discovering potentially new cell types. Researchers from the Wellcome Sanger Institute and EMBL’s European Bioinformatics Institute (EMBL-EBI) have created a new method called Single Cell Clustering Assessment Framework (SCCAF) that bridges this gap.
Click here for original story, Identifying cell types from single-cell RNA sequencing data automatically
Source: Phys.org