In the past several decades, physicists have conducted deep laboratory investigations into nonlinear optics, plasma physics and quantum science using advanced high-intensity, ultrashort-pulse lasers. Increased use of the technology naturally risked damaging the optical detection systems and therefore they proposed a variety of optical limiting mechanisms and devices. Device miniaturization of such designs while maintaining superior integrability and control can, however, become complex. In a new report, Haoliang Qian and a research team in electrical and computer engineering, materials science, chemistry and the Center for Memory and Recording Research at the University of California, San Diego, U.S., detailed a reflection-mode pulse limiter. They engineered the device using nanoscale refractory films made of aluminum oxide and sandwiched titanium nitride (Al2O3/TiN/Al2O3) to build the metallic quantum wells (MQWs). The quantum size effect of the MQW provided large and ultra-fast Kerr-type nonlinearities. Functional multilayers containing these MQWs will find new applications in meta-optics, nanophotonics and nonlinear optics, and the results are now published on Science Advances.
Click here for original story, Nanoscale optical pulse limiter facilitated by refractory metallic quantum wells
Source: Phys.org