Machine learning methods provide new insights into organic-inorganic interfaces

Oliver Hofmann and his research group at the Institute of Solid State Physics at TU Graz are working on the optimization of modern electronics. A key role in their research is played by interface properties of hybrid materials consisting of organic and inorganic components, which are used, for example, in OLED displays or organic solar cells. The team simulates these interface properties with machine-learning-based methods. The results are used in the development of new materials to improve the efficiency of electronic components.


Click here for original story, Machine learning methods provide new insights into organic-inorganic interfaces


Source: Phys.org