Research team discovers mechanism that restores cell function after genome damage

A research team from Cologne has discovered that a change in the DNA structure—more precisely in the chromatin—plays a decisive role in the recovery phase after DNA damage. The key is a double occupation by two methyl groups on the DNA packaging protein histone H3 (H3K4me2). The discovery was made by scientists under the direction of Prof. Björn Schumacher of the Cluster of Excellence for Aging Research CECAD, the Center for Molecular Medicine Cologne (CMMC), and the Institute for Genome Stability in Aging and Disease at the University of Cologne. The specific change enables genes to be reactivated and proteins to be produced after damage: The cells regain their balance and the organism recovers. The protective role of H3K4me2 was identified in experiments with the nematode Caenorhabditis elegans. The study has now been published in the journal Nature Structural & Molecular Biology.


Click here for original story, Research team discovers mechanism that restores cell function after genome damage


Source: Phys.org