The past several decades have been hard on Apis mellifera, the Western honey bee. Originally native to Europe, Africa, and the Middle East, Western honey bees have spread worldwide thanks to the nutritional and medicinal value of their honey, pollen, royal jelly, beeswax, propolis, and venom. Even more recently, the rise of the mobile hive and increased demand for pollination services have resulted in an army of bees being unleashed on crops each year, most notably almonds, which require several million bee visits per acre. At the same time, the last 50 years have seen dramatic declines in honey bee populations due to pesticide use, climate change, and habitat destruction. Most notably, the spread of the parasitic mite Varroa destructor from Asia to Western Europe and North America in the 1970’s decimated A. mellifera colonies, making it nearly impossible for honey bees to survive without human intervention and resulting in the loss of the vast majority of wild and feral honey bee colonies. Given this decline, scientists have speculated that loss of genetic diversity among honey bees may be contributing to further losses in bee populations. A new study in Genome Biology and Evolution, titled “Digging into the genomic past of Swiss honey bees by whole-genome sequencing museum specimens,” provides evidence that disputes this theory, suggesting that loss of genetic diversity may not be among the long list of threats to bee survival.
Click here for original story, Good news for honey bees, according to 150-year-old museum specimens
Source: Phys.org