Are primordial magnetic field theories getting in a twist?

In cosmic voids where the density of galaxies is far lower than standard, astronomers have observed weak magnetic fields that may provide a window into the early universe. The fields 10-17-10-10 G in magnitude with large coherence lengths of up to megaparsecs are thought to have their origins in the early universe, but so far it is unclear when or how they were generated. One hypothesis is that an imbalance in the numbers of “left-handed” and “right-handed” fermions may be at the heart of it, as this could give rise to helical magnetic fields. But so far there has been no detailed analysis as to how the evolution of the numbers of left- and right-handed fermions might stack up against this hypothesis. Now a collaboration of researchers in Europe report a more rigorous analysis of this chirality imbalance with surprising results.


Click here for original story, Are primordial magnetic field theories getting in a twist?


Source: Phys.org