Topologically tailored photonic crystals (PhC) have opened up the possibility for attaining robust unidirectional transport of classical and quantum systems. The demand for unprecedented guiding capabilities that support unhindered transport around imperfections and sharp corners at telecom wavelengths, without the need for any optimization, is fundamental for efficient distribution of information through dense on-chip photonic networks. However, transport properties of experimental realizations of such topologically non-trivial states have been inferred by transmission measurements and even though robustness has been attested in the linear and nonlinear regimes, its exact quantification remains challenging.
Click here for original story, Direct quantification of topological protection in photonic edge states at telecom wavelengths
Source: Phys.org