A massive effort to map the precise binding locations of over 400 different kinds of proteins on the yeast genome has produced the most thorough and high-resolution map of chromosome architecture and gene regulation to date. The study reveals two distinct gene regulatory architectures, expanding the traditional model of gene regulation. So-called constitutive genes, those that perform basic ‘housekeeping’ functions and are nearly always active at low levels require only a basic set of regulatory controls; whereas those that that are activated by environmental signals, known as inducible genes, have a more specialized architecture. This finding in yeast could open the door to a better understanding of the regulatory architecture of the human genome.
Click here for original story, A new map of protein binding locations in yeast advances understanding of gene regulation
Source: Phys.org