A computational guide to lead cells down desired differentiation paths

There is a great need to generate various types of cells for use in new therapies to replace tissues that are lost due to disease or injuries, or for studies outside the human body to improve our understanding of how organs and tissues function in health and disease. Many of these efforts start with human induced pluripotent stem cells (iPSCs) that, in theory, have the capacity to differentiate into virtually any cell type in the right culture conditions. The 2012 Nobel Prize awarded to Shinya Yamanaka recognized his discovery of a strategy that can reprogram adult cells to become iPSCs by providing them with a defined set of gene-regulatory transcription factors (TFs). However, progressing from there to efficiently generating a wide range of cell types with tissue-specific differentiated functions for biomedical applications has remained a challenge.


Click here for original story, A computational guide to lead cells down desired differentiation paths


Source: Phys.org