Machine learning, a technique used in the artificial intelligence (AI) software behind self-driving cars and digital assistants, now enables scientists to address key challenges to harvesting on Earth the fusion energy that powers the sun and stars. The technique recently empowered physicist Dan Boyer of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) to develop fast and accurate predictions for advancing control of experiments in the National Spherical Torus Experiment-Upgrade (NSTX-U)—the flagship fusion facility at PPPL that is currently under repair.
Click here for original story, Artificial intelligence speeds forecasts to control fusion experiments
Source: Phys.org