GLOSTAR: Tracing atomic and molecular gas in the Milky Way

By combining two of the most powerful radio telescopes on Earth, an international team of researchers led by the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, created the most sensitive maps of the radio emission of large parts of the Northern Galactic plane so far. The data were taken with the Karl G. Jansky Very Large Array (VLA) in New Mexico in two different configurations and the 100-m Effelsberg telescope near Bonn. This provides for the first time a radio survey covering all angular scales down to 1.5 arc-seconds, the apparent size of a tennis ball lying on the ground and seen from a flying plane. Contrary to previous surveys, GLOSTAR observed not only the radio continuum in the frequency range from 4-8 GHz in full polarization, but simultaneously also spectral lines that trace the molecular gas (from methanol and formaldehyde) and atomic gas via radio recombination lines.


Click here for original story, GLOSTAR: Tracing atomic and molecular gas in the Milky Way


Source: Phys.org