Deep learning and holography create a better point-of-care sensor

Agglutination assays are widely used immunological sensors based on antigen-antibody interactions that result in clumping of antibody-coated microscopic particles. Once the sample—for example, a patient’s serum—is introduced, the corresponding target antigens in the sample rapidly attach to the antibody binding sites and the particles start to form clusters due to the target antigen’s capability of binding to different sites simultaneously. The level of clustering among the particles is indicative of the amount of antigen present in a sample. These particle-based sensors have been used to test for antigens in a number of bodily fluids, and to diagnose a wide range of diseases. Its major advantages in point-of-care diagnostics include short reaction time, low sample volume, low-cost, and high specificity. One of the barriers to its wider adoption lies in the assay’s low sensitivity and lack of quantitative measurements.


Click here for original story, Deep learning and holography create a better point-of-care sensor


Source: Phys.org