Low-voltage magnetoelectric coupling in membrane heterostructures

Strain-mediated magnetic coupling in ferroelectric and ferromagnetic heterostructures can offer a unique opportunity for scientific research in low-power multifunctional devices. Ferroelectrics are materials that can maintain spontaneous and reversible electric polarization. Relaxor-ferroelectrics that exhibit high electrostriction are ideal candidates for ferroelectric layer constructs due to their large piezoelectricity. Although the properties of relaxor ferroelectrics are known, their mechanistic origins remain a mystery, giving rise to an enigmatic form of materials. In addition to that, thin films are ineffective from substrate clamping and can substantially reduce piezoelectric in-plane strains. In a new report now published in Science Advances, Shane Lindemann and a research team in materials science, and physics in the U.S. and Korea, displayed low-voltage magnetoelectric coupling in an all-thin-film heterostructure using anisotropic strains induced by the orientation of the material. The team used an ideal ferroelectric layer of Pb(Mg1/3Nb2/3)O3–PbTiO3 abbreviated PMN-PT during this work and coupled it with ferromagnetic nickel overlayers to create membrane heterostructures with magnetization. Using scanning transmission electron microscopy and phase-field simulations, they clarified the membrane response to understand the microstructural behavior of PMN-PT thin films, to then employ them in piezo-driven magnetoelectric heterostructures.


Click here for original story, Low-voltage magnetoelectric coupling in membrane heterostructures


Source: Phys.org